USING THE CD4021 SHIFT REGISTER TO EXPAND THE BX24 INPUTS.

Using this technique, you can get an almost unlimited number of multiplexed inputs into your BX24 using only 3 pins. The circuit is shown below:

 +5

BX24 Pin 5 3 x CD4021 10k

 Pin 7 A23

 9 10k

 Pin 6

 10

 33

 3

 11

 9

 10

 3

 11

 9

 10

 3

Notes:

Power supplies on pins 9(0v) and 16(+5) not shown.

All pins 10 connected together to Bx24 pin 5

All pins 9 connected together to BX24 pin 7

The last CD4021 has its pin 3 connected to BX24 pin 6

Pin 3 of each CD4021 connected to pin 11 of the next one in line.

All inputs have a 10k pullup, and a 10k series resistor. I used a SIL package which has 8 resistors in a single-in-line package for the pullups, and a DIL (dual in line) package for the series resistors, but individual resistors can be used.

Only one of the 24 inputs is shown. All are identical.

Optional LED. An LED and resistor connected to pin 7 of the BX24 is a useful indicator that the inputs are being read, and flashes at each input read.

BX24 pin 7 470ohm LED 0v (ground)

Input labelling:

A0 = pin 7

A1 = pin 6

A2 = pin5

A3 = pin 4

A4 = pin13

A5 = pin 14

A6 = pin 15

A7 = pin 1

A8 = pin 7 next device

etc

Sample Code:

const clockpin as byte = 5

const datapin as byte = 6

const loadpin as byte = 7

dim Tstat as boolean

‘thermostat input A0

dim burner_enable as boolean
‘input A1

dim program_sw as boolean

‘input A2

dim run as boolean

‘input A3

dim Inch_1 as boolean

‘input A4

dim Inch_2 as boolean

‘input A5

etc

etc for all your inputs

‘********************************

sub Main()

‘main loop

do

‘your code

call read_inputs

..

..

..

loop

end sub

‘*********************************

‘sub read inputs()

call putpin(clockpin,1)

‘set clock pin high

sleep(2)

call putpin(25,0)

‘red led on (optional)

call pulseout(loadpin,1.0E-2,1)

‘pulse load pin

call putpin(25,1)

‘red led off (optional)

sleep(2)

data(1) = shiftin(datapin,clockpin,8)

‘read first 4021

sleep(2)

data(2) = shiftin(datapin,clockpin,8)

‘read 2nd 4021

sleep(2)

data(3) = shiftin(datapin,clockpin,8)

‘read 3rd 4021

sleep(2)

‘we now need to read each data bit one at a time and assign it to our chosen labels.

‘this a bit laborious, but cut&paste helps.

Tstat

= not(cbool(getbit(data1,0)

‘input A0

burner_enable = not(cbool(getbit(data1,1)

‘input A1

program_sw
= not(cbool(getbit(data1,2)

‘input A2

run

= not(cbool(getbit(data1,3)

Inch_1

= not(cbool(getbit(data1,4)

Inch_2

= not(cbool(getbit(data1,5)

‘spare

= not(cbool(getbit(data1,6)

‘spare

= not(cbool(getbit(data1,7)

‘spare

= not(cbool(getbit(data1,7)

‘spare

= not(cbool(getbit(data2,0)

‘spare

= not(cbool(getbit(data2,1)

‘spare

= not(cbool(getbit(data2,3)

‘spare

= not(cbool(getbit(data2,4)

‘spare

= not(cbool(getbit(data2,5)

‘spare

= not(cbool(getbit(data2,6)

‘spare

= not(cbool(getbit(data2,7)

‘spare

= not(cbool(getbit(data3,0)

‘spare

= not(cbool(getbit(data3,1)

etc

‘spare

= not(cbool(getbit(data3,7)

‘input A23

end sub

‘***

NOTES:

Call this subroutine every time you want to update the inputs. I call it once per loop through the main, which means the inputs get scanned every few milliseconds. This means a very rapid momentary input may get missed, but this can be an advantage in some systems, and acts as a switch debounce. You can add as many CD4021s as you like to expand the number of inputs. I’ve only ever used 32 but I see no reason why this can’t be expended.

I use a similar circuit and procedure to expand 3 BX24 outputs to obtain 24 open collector 500mA outputs using 3 x UCN5821 chips if anyone is interested.

This is shown below:

 UCN5821

 Ser in Bx24 pin 8 2 16

 15

 Clk BX24 pin 9 1 14

 Strobe BX24 pin 10 6 13

 12

 11

 0v 7 10

 3 9

 5

 2

 1

 6

Notes on UCN5821 Serial Output MUX
Power supplies not shown on dwg. Pin 4 = +5v

 Pins 3 &7 tied to ground.

 Pin 8 is power ground and must be tied to 0v at the power supply. It must not share a common line from pin 3& 7. Use a separate line for pin 8, back to the power supply terminal. (All pins 8 can be tied together and use the same return track or wire.).

All outputs are open collector 500mA outputs. They will operate a relay directly as shown below, or drive leds etc.

 UCN5821 relay

 output pin +12 or +24

UCN5821 output pin LED 1K +12

The Strobe pin (pin6) of each all UCN’s are tied together

The clock pin (pin 1) of all UCN s are tied together.

The serial out of each UCN, pin 5 goes to the serial in (pin 2) of the next cascaded

UCN.

The UNC must run on +5 because the outputs of the BX24 are 5v logic.

 There is no limit to the number of UCNs that can be cascaded together. I have only shown 2 devices.

Sample Code.

This code is for 16 outputs.

The outputs are labelled OP0, OP2,OP3 etc to OP15. they can howver be given any labels you like. In earlier code, you would set the outputs hi or low as required, then call the subroutine below, which will then set theose outputs as required.

Dim Qout(1 to 2) as byte

‘for 3 UCN’s, use 1 to 3 etc

I haven’t shown all the appropriate dims, but that’s easy. The editor/assembler will

Soon sort that out.

This example is written for clock on serial on pin 8, clock on pin 9 and strobe on pin 10. You can change this obviously.

‘**

Sub do_outputs()

‘put each output into an array called Qout, into the appropriate position

Call putbit(Qout,0,OP0)

Call putbit(Qout,1,OP1)

Call putbit(Qout,2,OP2)

Call putbit(Qout,3,OP3)

Call putbit(Qout,4,OP4)

Call putbit(Qout,5,OP5)

Call putbit(Qout,6,OP6)

Call putbit(Qout,7,OP7)

Call putbit(Qout,8,OP8)

Call putbit(Qout,9,OP9)

Call putbit(Qout,10,OP10)

Call putbit(Qout,11,OP11)

Call putbit(Qout,12,OP12)

Call putbit(Qout,13,OP13)

Call putbit(Qout,14,OP14)

Call putbit(Qout,15,OP15)

‘etc etc for additional UCN’s

‘now shift the data into the UCN’s as multiple 8 bit words

Call putpin(9,0)

‘set clock low

m = flipbits(Qout(1))

‘get bits in logical order

call shiftout(8,9,8,m)

m = flipbits(Qout(2))

call shiftout(8,9,8,m)

‘m = flipbits(Qout(3))

‘only if 3 UCN’s

‘call shiftout(8,9,8,m)

‘only if 3 UCN’s

‘etc etc for additional UCN’s

‘now strobe all UCN’s

call putpin(10,1)

‘set strobe high

sleep(5)

call putpin(10,0)

‘set strobe low

end sub

‘**

